Abstract

This article investigates the leader-following successive lag consensus (SLC) for nonlinear multi-agent systems (NMASs) via the observer-based event-triggered control (OBETC), in which two scenarios including constant consensus delay and time-varying consensus delay are considered. Since the system states might not be directly available in actual scenes, the state estimation method is utilized for followers to track their full information. Based on the relative state, a class of distributed event-triggered control protocols is constructed, where the event-triggered strategy is introduced such that each follower can determine the broadcasting time to its neighbors. Obviously, these designed control protocols considerably lessen the expense over communication networks and the frequency of protocol updates. Furthermore, with the aid of the Lyapunov function method, a series of sufficient conditions for guaranteeing the leader-following SLC of NMASs is obtained. Meanwhile, it is proved that no Zeno behavior is exhibited. Finally, several numerical examples are given to illustrate the validity of our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.