Abstract

This study investigates the leader-following consensus issue of multi-agent systems subject to simultaneous connectivity-mixed attacks, actuator/sensor faults and disturbances. Connectivity-mixed attacks are remodeled into connectivity-maintained and connectivity-paralyzed topologies in a switched version, and actuator/sensor faults are established with unified incipient-type and abrupt-type characteristics. Then, unknown input observer-based decoupling and estimation are incorporated to achieve unknown state and fault observations with the normalized technique, and the leader-following consensus-based compensation to faults, resilience to attacks and robustness to disturbances are also realized with the neighboring output information and sensor fault estimation through the distributed framework. Criteria of achieving exponential leader-following consensus of multi-agent systems under cyber-physical threats are derived with dual attack frequency and activation rate indicators. Simulation example is conducted to exemplify the validation and merits of the proposed leader-following consensus algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.