Abstract
The leader-following consensus problem of higher order multi-agent systems is considered. In the system, the dynamics of each agent and the leader is a linear system. The control of each agent using local information is designed and detailed analysis of the leader-following consensus is presented for both fixed and switching interaction topologies, which describe the information exchange between the multi-agent systems. The design technique is based on algebraic graph theory, Riccati inequality and Lyapunov inequality. Simulations indicate the capabilities of the algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.