Abstract

In network systems, a group of nodes may evolve into several subgroups and coordinate with each other in the same subgroup, i.e., reach cluster synchronization, to cope with the unanticipated situations. To this end, the leader-following practical cluster synchronization problem of networks of generic linear systems is studied in this paper. An event-based control algorithm that can largely reduce the amount of communication is first proposed over directed communication topologies. In the proposed algorithm, each node decides itself when to transmit its current state to its neighbors and how to update its controller according to the estimations of the states of it and its neighbors. Then, the Lyapunov method is utilized to perform the convergence analysis. It shows that the practical cluster synchronization can be ensured by choosing appropriate parameters no matter what kind of estimation for the state is applied. Furthermore, the Zeno behavior is also excluded for each node under some mild assumptions. Besides, three kinds of common estimations for the states including zero-order hold model, first-order approximate model, and high-order model-based estimations are, respectively, analyzed from the perspective of the exclusion of Zeno behavior. Finally, the validity of the proposed algorithm is demonstrated, the effects of the concerned parameters are simply presented, and the effects of the three estimations are also compared through several simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call