Abstract
In this article, two kinds of leader-following formation control problems for second-order nonlinear multi-agent systems are investigated, that is, the cases with fixed topology and with switching topology. For the former, by constructing an appropriate Lyapunov functional and utilising linear matrix inequality (LMI) method, we propose a formation control algorithm which makes the nonlinear multi-agent systems converge to a desired formation. In addition, a formation control algorithm is also developed for coupled double-integrators with a constant reference velocity. Then we extend these results to the case when the interaction topology is switching. Numerical simulations are presented finally to demonstrate the effectiveness of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.