Abstract

The leader-following consensus problem of higher order multi-agent systems is considered. In the system, the dynamics of each agent and the leader is a linear system. The control of each agent using local information is designed and detailed analysis of the leader-following consensus is presented for both fixed and switching interaction topologies, which describe the information exchange between the multi-agent systems. The design technique is based on algebraic graph theory, Riccati inequality and Lyapunov inequality. Simulations indicate the capabilities of the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.