Abstract

In this paper, the distributed iterative learning control for nonholonomic mobile robots with a time-varying reference is investigated, in which the mobile robots are with parametric uncertainties and are not fully actuated. Besides, the control gains of mobile robots are unknown. The leader is with a time-varying reference trajectory, and there is no need to assume that the time-varying reference is linearly parameterized by a set of known functions. A distributed control scheme is designed for each mobile robot based on a set of local compensatory filters designed by its neighborhood information. Stability analysis is established through a set of composite energy function. The uniform convergence of the consensus errors can be guaranteed. An example is given to show that our designed control law is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.