Abstract

A question that many researchers in social robotics are addressing is how to create more human-like behaviour in robots to make the collaboration between a human and a robot more intuitive to the human partner. In order to develop a human-like collaborative robotic system, however, human collaboration must first be better understood. Human collaboration is something we are all familiar with, however not that much is known about it from a kinematic standpoint. One dynamic that hasn’t been researched thoroughly, yet naturally occurs in human collaboration, is for instance leader–follower dynamics. In our previous study, we tackled the question of leader–follower role allocation in human dyads during a collaborative reaching task, where the results implied that the subjects who performed higher in the individual experiment would naturally assume the role of a leader when in physical collaboration. In this study, we build upon the leader–follower role allocation study in human dyads by observing how the leader–follower dynamics change when the collaborative task becomes more complex. Here, the study was performed on a reaching task, where one subject in a dyad was faced with an additional task of obstacle avoidance when performing a 2D reaching task, while their partner was not aware of the obstacle. We have found that subjects change their roles throughout the task in order to complete it successfully, however looking at the overall task leader the higher-performing individual will always dominate over the lower-performing one, regardless of whether they are aware of the additional task of obstacle avoidance or not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call