Abstract

We consider the problem of leader election (LE) in single-hop radio networks with synchronized time slots for transmitting and receiving messages. We assume that the actual number n of processes is unknown, while the size u of the ID space is known, but is possibly much larger. We consider two types of collision detection: strong (SCD), whereby all processes detect collisions, and weak (WCD), whereby only non-transmitting processes detect collisions. We introduce loneliness detection (LD) as a key subproblem for solving LE in WCD systems. LD informs all processes whether the system contains exactly one process or more than one. We show that LD captures the difference in power between SCD and WCD, by providing an implementation of SCD over WCD and LD. We present two algorithms that solve deterministic and probabilistic LD in WCD systems with time costs of $${\mathcal{O}(\log \frac{u}{n})}$$ and $${\mathcal{O}(\min( \log \frac{u}{n}, \frac{\log (1/\epsilon)}{n}))}$$ , respectively, where $${\epsilon}$$ is the error probability. We also provide matching lower bounds. Assuming LD is solved, we show that SCD systems can be emulated in WCD systems with factor-2 overhead in time. We present two algorithms that solve deterministic and probabilistic LE in SCD systems with time costs of $${\mathcal{O}(\log u)}$$ and $${\mathcal{O}(\min ( \log u, \log \log n + \log (\frac{1}{\epsilon})))}$$ , respectively, where $${\epsilon}$$ is the error probability. We provide matching lower bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.