Abstract

AbstractLead-bearing phyllotungstite from the Clara mine in the central Black Forest, Germany has a formula (Cs0.41)Na0.14K0.05Pb2+2.01Ca0.26[W6+10.87Fe3+3.13O35.75(OH)6.25](O(H2O)3). X-ray diffraction patterns exhibit pseudohexagonal symmetry, but refinement of single-crystal synchrotron data has shown that the true symmetry is orthorhombic, Cmcm, with a = 7.298(1), b = 12.640(2), c = 19.582(4) Å, and that the pseudohexagonal character is due to submicrometre-scale cyclical twinning by rotation about the pseudohexagonal c axis. The structure can be described in terms of an ordered intergrowth, parallel to (001), of (111)py blocks with pyrochlore-type structures, which are ~6 Å in width, and two-layer wide regions with a hexagonal tungsten bronze (HTB) type structure. Caesium atoms occupy 18-coordinate cavities in the HTB regions, and H2O molecules occupy Φ sites in the A2B2O6Φ pyrochlore blocks. The lowering of symmetry from hexagonal to orthorhombic is due to partial ordering of W and Fe in the octahedral B sites and of Pb and vacancies in the A sites of the pyrochlore blocks. The ideal formula for the intergrowth structure (with no vacancies) is C 2A10[B14(O,OH)42]Φ4, where C is the cavity site in the HTB slabs. The mineral has only 21% occupancy of the C site and 25% occupancy of the A site, but full occupancy of the Φ site. There may be some mixing of Cs and H2O between the C and Φ sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call