Abstract

Lead systems that include an active pectoral shell reduce defibrillation thresholds and permit transvenous defibrillation in nearly all patients. A further improvement in defibrillation efficacy is desirable to allow for smaller pulse generators with a reduced maximum output. Accordingly, the purpose of this study was to compare defibrillation thresholds with multiple transvenous lead systems including those with an active pectoral shell to determine which system would optimize defibrillation energy requirements. This prospective study was performed on 21 consecutive patients. Each subject was evaluated with 3 lead configurations with the order of testing randomized. The configurations were a dual coil transvenous lead (lead), the distal right ventricular coil and pectoral pulse generator shell (unipolar), and all 3 components (triad). The right ventricular coil was the cathode for the first phase of the biphasic defibrillation waveform. Delivered energy at defibrillation threshold was 11.2 ± 3.4 J for the lead configuration, 10.1 ± 5.2 J for the unipolar configuration, and 7.8 ± 3.6 J for the triad configuration (p <0.01). Leading edge voltage (p <0.01) and shock impedance (p <0.001) were also decreased for the triad configuration compared with the lead or unipolar configurations, whereas peak current was minimized with the unipolar configuration (p <0.01). We conclude that the combination of a dual coil, transvenous lead and an active pectoral shell reduces defibrillation energy requirements compared with either the lead alone or unipolar configuration. Moreover, the defibrillation thresholds were ≤15 J in all patients using the triad lead system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.