Abstract
Human immunodeficiency virus causes the acquired immunodeficiency syndrome (AIDS) and becomes a serious world-wide problem because of this disease's rapid propagation and incurability. Integrase strand transfer inhibitors (INSTIs) supports HIV have rapid drug resistance for antitreatment. Screening the traditional Chinese medicine (TCM) database by simulating molecular docking and molecular dynamics may select molecular compounds to inhibit INSTIs against HIV drug resistance. (S)-cathinone and (1S,2S)-norpseudoephedrine are selected based on structure and ligand-based drugs are designed and then get higher bioactivity predicted score from SVM than Raltegravir and other TCM compounds. The molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions and hydrogen bond variations define the main regions of important amino acids in integrase. In addition to the detection of TCM compound efficacy, we suggest (1S,2S)-norpseudoephedrine is better than the others based on the analysis of interaction and the effect on the structural variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.