Abstract
Progress on development of lead-salt thermoelectrically-cooled (TE-cooled) imaging sensors will be presented. The imaging sensor architecture has been integrated into field-ruggedized hardware, and supports the use of lead-salt based detector material, including lead selenide and lead sulfide. Images and video are from a lead selenide focal plane array on silicon ROIC at temperatures approaching room temperature, and at high frame rates. Lead-salt imagers uniquely possess three traits: (1) Sensitive operation at high temperatures above the typical ‘cooled’ sensor maximum (2) Photonic response which enables high frame rates faster than the bolometric, thermal response time (3) Capability to reliably fabricate 2D arrays from solution-deposition directly, i. e. monolithically, on silicon. These lead-salt imagers are less expensive to produce and operate compared to other IR imagers based on II-VI HgCdTe and III-V InGaAsSb, because they do not require UHV epitaxial growth nor hybrid assembly, and no cryo-engine is needed to maintain low thermal noise. Historically, there have been challenges with lead-salt detector-to-detector non-uniformities and detector noise. Staring arrays of lead-salt imagers are promising today because of advances in ROIC technology and fabrication improvements. Non-uniformities have been addressed by on-FPA non-uniformity correction and 1/f noise has been mitigated with adjustable noise filtering without mechanical chopping. Finally, improved deposition process and measurement controls have enabled reliable fabrication of high-performance, lead-salt, large format staring arrays on the surface of large silicon ROIC wafers. The imaging array performance has achieved a Noise Equivalent Temperature Difference (NETD) of 30 mK at 2.5 millisecond integration time with an f/1 lens in the 3-5 μm wavelength band using a two-stage TE cooler to operate the FPA at 230 K. Operability of 99.6% is reproducible on 240 × 320 format arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.