Abstract

The feasibility of lead removal through biological sulfate reduction process with ethanol as electron donor was investigated. Sulfide-rich effluent from biological process was used to remove lead as lead sulfide precipitate. The experiments were divided into two stages; Stage I startup and operation of sulfidogenic process in a UASB reactor and Stage II lead sulfide precipitation. In Stage I, the COD:S ratio was gradually reduced from 15:1 to 2:1. At the COD:S ratio of 2:1, sulfidogenic condition was achieved as identified by 80–85% of electron flow by sulfate reducing bacteria (SRB). COD and sulfate removal efficiency were approximately 78% and 50%, respectively. In Stage II, the effluent from UASB reactor containing sulfide in the range of 30–50 mg/L and lead-containing solution of 45–50 mg/L were fed continuously into the precipitation chamber in which the optimum pH for lead sulfide precipitation of 7.5–8.5 was maintained. It was found that lead removal of 85–95% was attained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.