Abstract

Spent lead paste is the main component in lead-acid batteries reaching end of life. It contains about 55% lead sulphate and 35% lead dioxide, as well as minor amounts of lead oxide. It is necessary to recycle spent lead paste with minimal pollution and low energy consumption instead of the conventional smelting method. In this study, a novel approach involving hydrometallurgical desulphurisation and thermal degradation is developed to recover lead as PbO products from spent lead acid batteries. First, the desulphurisation effects and phase compositions of products with different transforming agents were compared, and the optimum conditions using (NH4)2CO3 as a transforming agent were determined. And then, the thermal degradation processes of both precursors lead carbonate and lead dioxide were investigated to prepare α-PbO, Pb3O4, and β-PbO products in argon and air atmospheres, respectively. Both the desulphurisation precursors and the calcination products were characterised by thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. The results showed that the lead oxide products were prepared, including α-PbO at 450°C in argon, Pb3O4 and β-PbO at 480°C and 620°C in air, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.