Abstract

The effect of lead on the catalytic performance of Mn-Ce/TiO2 catalysts in the selective catalytic reduction (SCR) of NOx with ammonia at low temperature was investigated; with the help of nitrogen sorption, XRD, FT-IR spectroscopy, H2-TPR and NH3-TPD characterization, the causes of lead poisoning and acid regeneration were clarified. The results indicate that the doping of Pb in Mn-Ce/TiO2 leads to a significant decrease of the low-temperature SCR activity; with a Pb loading of 11%, the conversion of NO over Mn-Ce/TiO2 at 180°C decreases from original 100% on the fresh catalyst to 44% on the Pd-poisoned catalyst. The presence of Pb may reduce the content of active Mn4+ and Ce3+ species on the Mn-Ce/TiO2 catalyst, which suppresses the redox cycle of Mn4+ + Ce3+ ↔ Mn3+ + Ce4+; moreover, the decrease of surface acidity on the Mn-Ce/TiO2 catalyst by the doping of Pb is also disadvantageous to the adsorption and activation of NH3. The Pd-poisoned Mn-Ce/TiO2 can be regenerated by nitric acid treatment; after the regeneration, the catalytic activity of Mn-Ce/TiO2 in NH3-SCR of NO is almost completely recovered and even exceeds that of the fresh catalyst at 80–150°C. The nitric acid treatment can restore the redox capacity of Mn-Ce/TiO2, increase the surface area, and create new acid sites, which contribute to recovery of the activity of Pb-poisoned Mn-Ce/TiO2 catalyst in NH3-SCR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call