Abstract

Cushing's disease, characterized by elevated plasma cortisol levels, can be controlled by inhibition of 11β-hydroxylase (CYP11B1). The previously identified selective and potent CYP11B1 inhibitor 5-((5-methylpyridin-3-yl)methyl)-2-phenylpyridine Ref 7 (IC50= 2 nM) exhibited promutagenic potential as well as very low oral bioavailability in rats (F = 2%) and was therefore modified to overcome these drawbacks. Successful lead optimization resulted in similarly potent and selective 5-((5-methoxypyridin-3-yl)methyl)-3-phenylisoxazole 25 (IC50 = 2 nM, 14-fold selectivity over CYP11B2), exhibiting a superior pharmacological profile with no mutagenic potential. Furthermore, compound 25 inhibited rat CYP11B1 (IC50 = 2 μM) and showed a high oral bioavailability (F = 50%) and sufficient plasma concentrations in rats, providing an excellent starting point for a proof-of-principle study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call