Abstract

Lead (Pb2+) is a well-known type of neurotoxin and chronic exposure to Pb2+ induces cognition dysfunction. In this work, the potential role of early growth response gene 1 (EGR1) in the linkage of Pb2+ exposure and disrupted in scherophernia-1 (DISC1) activity was investigated. Human neuroblastoma cell line SH-SY5Y was subjected to different concentrations of lead acetate (PbAc) to determine the effect of Pb2+ exposure on the cell viability, apoptosis, and activity of EGR1 and DISC1. Then the expression of EGR1 in SH-SY5Y cells was knocked down with specific siRNA to assess the function of EGR1 in Pb2+ induced activation of DISC1. The interaction between EGR1 and DISC1 was further validated with dual luciferase assay, Supershift electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP)-PCR. Administration of PbAc decreased cell viability and induced apoptosis in SH-SY5Y cells in a dose-dependent manner. Additionally, exposure to PbAc also up-regulated expression of EGR1 and DISC1 at all concentrations. Knockdown of EGR1 blocked the effect of PbAc on SH-SY5Y cells, indicating the central role of EGR1 in the function of Pb2+ on activity of DISC1. Based on the results of dual luciferase assay, Supershift EMSA, and ChIP-PCR, EGR1 mediated the effect of Pb2+ on DISC1 by directly bound to the promoter region of DISC1 gene. The current study elaborated the mechanism involved in the effect of Pb2+ exposure on expression of DISC1 for the first time: EGR1 activated by Pb2+ substitution of zinc triggered the transcription of DISC1 gene by directly binding to its promoter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.