Abstract
Three discrete sub-belts of porphyry copper-type mineralization are recognized in the Colombian Andes: a western Eocene sub-belt, an eastern Jurassic to early Cretaceous sub-belt and, between them, a central Miocene sub-belt. The western sub-belt is part of an oceanic domain constituted by oceanic crust and overlying immature island-arc rocks, the eastern sub-belt is within a continental domain underlain by the leading edge of the Guayana shield, and the central sub-belt spans the faulted boundary between them. The thicker continental crust includes important granulitic rocks which crop out locally, as in the vicinity of the Mocoa porphyry copper deposit. Pb-isotopic ratios were determined for pyrite samples collected from 6 porphyry copper centers, 3 in the western sub-belt, 2 in the eastern sub-belt, and one in the central sub-belt. Ratios fall into 3 discrete populations: the most radiogenic values represent the western sub-belt, the least radiogenic represent the eastern sub-belt, and an intermediate value corresponds to the central sub-belt. Ratios therefore become progressively less radiogenic from the western oceanic domain to the eastern cratonic domain. Comparison of the Pb-isotopic ratios with those given in the literature for possible source materials for Colombian porphyry copper leads enables the subcontinental mantle wedge, subducted oceanic crust and subducted metalliferous sediments to be discounted as principal sources. The relatively radiogenic signatures of 5 of the porphyry copper centers appear to be broadly compatible with either a subducted pelagic sediment source or an upper continental crust source, whereas the sixth center, Mocoa, is characterized by a distinctly less radiogenic 206Pb 204Pb ratio. An admixture of a relatively small percentage of non-radiogenic Pb from granulitic material in the upper crust with the more radiogenic Pb typical of the western sub-belt centers could account for the Mocoa data. Because much of the upper crustal section in the region of Mocoa is thought to be dominated by granulitic material, the radiogenic Pb component could be best derived from subducted pelagic sediments. If this is the case, then a subducted pelagic sediment source could dominate the Pb-isotopic signatures of all Colombian porphyry copper mineralization, with some of the Pb-isotopic differences being produced by selective contamination with upper crustal leads of variable character. If this conclusion is correct, then the fundamental metal budgets of Colombian porphyry copper systems are probably largely independent of upper crustal influences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.