Abstract

Heavy metal exposure has long been associated with metallothionein (MT) regulation and its functions. MT is a ubiquitous, cysteine-rich protein that is involved in homeostatic metal response for the essential metals zinc and copper, as well as detoxification of heavy metals; the most commonly proposed being cadmium. MT binds in vivo to a number of metals in addition to zinc, cadmium and copper, such as bismuth. In vitro, metallation with a wide range of metals (especially mercury, arsenic, and lead) has been reported using a variety of analytical methods. To fully understand MT and its role with lead metabolism, we will describe how MT interacts with a wide variety of metals that bind in vitro. In general, affinity to the metal-binding cysteine residues of MT follows that of metal binding to thiols: Zn(II) < Pb(II) < Cd (II) < Cu(I) < Ag(I) < Hg(II) < Bi(III). To introduce the metal binding properties that we feel directly relate to the metallation of metallothionein by Pb(II), we will explore MT's interactions with metals long known as toxic, particularly, Cd(II), Hg(II), and As(III), along with xenobiotic metals, and how these metal-binding studies complement those of lead binding. Lead's effects on an organism's physiological functions are not fully understood, but it is known that chronic exposure inflicts amongst other factors pernicious anemia and developmental issues in the brain, especially in children who are more vulnerable to its toxic effects. Understanding the interaction of lead with metallothioneins throughout the biosphere, from bacteria, to algae, to fish, to humans, is important in determining pathways for lead to enter and damage physiologically significant protein function, and thereby its toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.