Abstract

In this study, varying weight percentages of multiwalled carbon nanotubes were successfully incorporated into 95.8Sn-3.5Ag-0.7Cu solder to synthesize novel lead-free composite solders. The composite solders were synthesized using a powder metallurgy route consisting of blending, compaction, sintering, and extrusion. The extruded materials were then characterized for their physical, thermal, and mechanical properties. With the addition of increasing weight percentage of carbon nanotubes, the composite solders experienced a corresponding decrease in density values and an improvement in wetting properties. The melting temperatures of the composite solders were found to be unchanged with additions of carbon nanotubes. However, improvements in the mechanical properties, in terms of microhardness and tensile properties, were observed with increasing weight percentages of carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.