Abstract
Lead halide perovskites have attracted tremendous research interests in the light-emitting field because of their high defect tolerance, solution processability, tunable spectrum, and efficient emission. In terms of luminescence types, both the narrowband emission derived from free-exciton (FE)and broadband white light emission from self-trapped exciton (STE) show great advantages in light-emitting applications. Despite the fascinating characteristics, their commercialization still suffers from the presence of toxic lead (Pb) and unsatisfactory stability. In this spotlight, we mainly focus on the lead-free candidates as phosphors for possible light-emitting applications. Thanks to the chemical diversity of metal halide perovskites and perovskite variants, many excellent lead-free light-emitting materials have recently been synthesized and characterized. We first classify these materials into three types according to material structures, including (1) double perovskites A2B(I)B(III)X6, (2) vacancy ordered perovskites A2B(IV)X6, (3) miscellaneous perovskite variants or halide semiconductors, which refer to halides without clear relation to the perovskite structure. We then highlight the importance of electronic dimensionality, defect passivation, and impurity doping in developing highly efficient perovskite-based emitters. We also discuss their applications in white light-emitting diodes (W-LED). Further challenges toward practical applications and potential applications are also included in a section on outlook and future challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.