Abstract
This study presents a multiunit hybrid piezo-triboelectric nanogenerator (HNG), utilizing both the triboelectric and piezoelectric effects, constructed from Bismuth Titanate, Bi 4 Ti 3 O 12 (BiTO)/polydimethylsiloxane (PDMS) composite films through a simple and cost-effective fabrication technique. The BiTO samples synthesized by a mixed oxide route crystallize in the orthorhombic symmetry, as confirmed by the Rietveld refinement of the structural data. The temperature- and frequency-dependent dielectric spectra elucidate the colossal dielectric properties of BiTO, originating from the combined effects of interfacial polarization, hopping polarization, and extrinsic electrode effect. The colossal dielectric BiTO leads to the amplification of internal polarization, providing enhanced output performance of the HNG device. As a result, the HNG devices exhibit multiple folds improvement in terms of power density compared to individual PDMS-BiTO composite-based PENG and TENG devices. Subsequently, a new design of device structure comprising a multiunit HNG device is constructed with the help of a 3D printed structure and a ball, delivering the voltage and current output of 300 V and 4.7 μA, respectively. Finally, the HNG device is utilized for biomechanical energy harvesting and powering various electronics like LEDs, a calculator, and a wristwatch. • Internal hybridization of piezoelectric-triboelectric boost the power density. • Bismuth titanate possesses multiferroic behavior and colossal permittivity. • Internal polarization amplification of a dielectric polymer is achieved. • New device structure for energy harvesting and power up the electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.