Abstract
GeTe-based materials with superior thermoelectric properties promise great potential for waste heat recovery. However, the lack of appropriate diffusion barrier materials (DBMs) limits not only the energy conversion efficiency but also the service reliability of the thermoelectric devices. Here, we propose a design strategy based on phase equilibria diagrams from first-principles calculations and identify transition metal germanides (e.g., NiGe and FeGe2) as the DBMs. Our validation experiment confirms the excellent chemical and mechanical stabilities of the interfaces between the germanides and GeTe. We also develop a process for scaling up the GeTe production. Combining with module geometry optimization, we fabricate an eight-pair module using mass-produced p-type Ge0.89Cu0.06Sb0.08Te and n-type Yb0.3Co4Sb12 and achieve a record-high efficiency of 12% among all reported single-stage thermoelectric modules. Our work thus paves the way for waste heat recovery based on completely lead-free thermoelectric technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.