Abstract

AbstractEnvironmental and health considerations have encouraged the development of ammunition with substitutes for lead and other heavy metals. In general, the emission products from munitions containing nitro‐based propellants are highly complex mixtures of gases, vapors, and solid particles. The major combustion products are H2O, CO, CO2, H2, and N2. In addition, compounds including hydrogen cyanide (HCN), ammonia (NH3), methane (CH4), nitrogen oxides, benzene, acrylonitrile, toluene, furan, aromatic amines, benzopyrene, and various polycyclic aromatic hydrocarbons are detected in minor concentrations. Many of the identified chemical species have severe toxicological properties, and some of the compounds do even have mutagenic effects. Gun smoke emission is a concern because its exposure to humans may be substantial during military and civilian police training, as respiratory protection equipment is not routinely worn. In this work we study the compositions of some of the main decomposition products, experimentally as well as theoretically. The concept of frozen equilibrium at around 1500–2000 K appears to apply for CO, CO2, and H2. However, the trace species in the combustion mixtures appear theoretically to be present in negligible concentrations. Our measured results are many orders of magnitude higher than theoretical results in open space. We forecast that future development of gun powder will focus on reducing the amount of toxic trace species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.