Abstract

BackgroundOur aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues. We propose the application of electromagnetic lead field theory and reciprocity for MEA design and measurement result interpretation. Further, we simulated impedance spectroscopy (IS) with two- and four-electrode setups and a biological cell to illustrate the tool in the assessment of the capabilities of given MEA electrode constellations for detecting cells on or in the vicinity of the microelectrodes.ResultsThe results show the power of the lead field theory in electromagnetic simulations of cell–microelectrode systems depicting the fundamental differences of two- and four-electrode IS measurement configurations to detect cells. Accordingly, the use in MEA system design is demonstrated by assessing the differences between the two- and four-electrode IS configurations. Further, our results show how cells affect the lead fields in these MEA system, and how we can utilize the differences of the two- and four-electrode setups in cell detection. The COMSOL simulator model is provided freely in public domain as open source.ConclusionsLead field theory can be successfully applied in MEA design for the IS based assessment of biological cells providing the necessary visualization and insight for MEA design. The proposed method is expected to enhance the design and usability of automated cell and tissue manipulation systems required for bioreactors, which are intended for the automated production of cell and tissue grafts for medical purposes. MEA systems are also intended for toxicology to assess the effects of chemicals on living cells. Our results demonstrate that lead field concept is expected to enhance also the development of such methods and devices.

Highlights

  • Our aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues

  • Lead field theory can be successfully applied in MEA design for the impedance spectroscopy (IS) based assessment of biological cells providing the necessary visualization and insight for MEA design

  • MEA systems are intended for toxicology to assess the effects of chemicals on living cells

Read more

Summary

Introduction

Our aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues. The knowledge of the location of adherent or nearby cells would be helpful in identifying the bioelectric sources, e.g., in neuronal action potential analysis, and in designing bioelectric systems for the detection and assessment of cells and tissues. These developments are crucial for the development of automated cell and tissue handling and assessment in future bioreactors for automated cell and tissue craft production for medical uses. The automated assessment of the effects of chemicals on the cells and tissues is important for the development of automated drug and toxicity screening systems

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call