Abstract

Environmental lead (Pb) pollution is a worldwide public health problem and causes various diseases, especially neurodegenerative diseases. It is increasingly recognized that microglia-mediated neuroinflammation plays a crucial role in lead neurotoxicity, but the underlying mechanisms remain to be further explored. Recent studies indicated that cell metabolism, especially lipid metabolism, regulates many microglial functions, including cytokine secretion and phagocytosis. Whether lipid metabolism is involved in Pb-induced neuroinflammation is still unknown. In the current studies, we investigated the effects of Pb on microglial lipid metabolism by utilizing lipidomics. Histochemistry staining and oxygen consumption rate (OCR) were used to validate lipidomics results. Fenofibrate (FEN), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, was applied to investigate whether lipid metabolism regulation mitigated Pb's neuroinflammatory response. Microglial autophagic proteins were detected to investigate the role of lipophagy in Pb's effect on lipid metabolism. Our results showed that Pb exposure increased concentrations of various lipid metabolites and induced lipid metabolism disorders, especially in fatty acid metabolism. Pb caused lipid droplet (LD) accumulation and slightly enhanced fatty acid oxidation (FAO) in microglia. FEN pretreatment markedly inhibited Pb's effects on LDs and further mitigated Pb-induced inflammatory response by reducing pro-cytokines' expression and enhancing phagocytosis function. FEN intervention also inhibited Pb's neurotoxicity by improving cognition-related behaviors. Pb exposure induced an abnormal increase of autophagic proteins, but the FEN addition partially neutralized Pb's effects on autophagy. Our data indicate that the Pb-induced neuroinflammation is regulated by fatty acid metabolism via the lipophagy process. Therapies focusing on lipid metabolism regulation are powerful tactics in Pb toxicity prevention and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call