Abstract

The study evaluated airborne exposures and blood lead (BPb) levels in 233 production workers at six diverse industrial plants in Kenya. Blood and personal breathing zone air samples were collected and analyzed for lead (Pb) using atomic absorption spectroscopy. Blood pressure (BP) levels were measured using a standard mercury sphygmomanometer. The results indicated mean airborne Pb levels ± standard deviation (SD) as follows: 183.2 ± 53.6 μg/m3 in battery recycling, 133.5 ± 39.6 μg/m3 in battery manufacturing, 126.2 ± 39.9 μg/m3 in scrap metal welding, 76.3 ± 33.2 μg/m3 in paint manufacturing, 27.3 ± 12.1 μg/m3 in a leather manufacturing, and 5.5 ± 3.6 μg/m3 in a pharmaceutical plant. The mean airborne Pb levels exceeded the U.S. Occupational Safety and Health Administration (OSHA) 8-hr time-weighted average (TWA) permissible exposure limit (PEL) for Pb of 50 μg/m3 in the battery manufacturing, battery recycling, welding, and paint manufacturing plants. Similarly, mean BPb concentrations exceeded the American Conference of Governmental Industrial Hygienists (ACGIH®) biological exposure index (BEI) for Pb of 30 μg/dl. A significant positive association was observed between BPb and breathing zone air Pb (R2 = 0.73, P < 0.001). Approximately 30% of the production workers (N = 233) were in the hypertensive range with an average systolic and diastolic blood pressure (BP) of 134.7 ± 12.7 mmHg and 86.4 ± 8.9 mmHg, respectively. In the multivariate regression analysis, age, duration of work, airborne Pb and BPb levels were significantly associated (P < 0.05) with a change in BP. We recommend improved engineering controls, work practices, and personal hygiene to reduce Pb exposures. In addition, workers should undergo comprehensive medical surveillance to include BPb and BP testing, and airborne Pb assessments in all industries with significant lead exposures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.