Abstract
Lead-doped carbon ceramic electrode as a new type of renewable composite electrode was prepared by mixing the lead powder with electrode matrix before gelation. Pb on the electrode surface was then converted to lead dioxide by the potential scanning of the composite electrode in 0.1 M NaOH solution in the range of − 0.3 to 0.7 V versus SCE. The composition and morphology of the electrodes were studied by energy dispersive X-ray spectrometry, scanning electron microscopy, and atomic force microscopy techniques. Cyclic voltammetry and chronoamperometry techniques were also used to study the electrocatalytic activity of the modified electrode toward the oxidation of the l-tyrosine. The best results were obtained at a working potential of 0.45 V (vs. SCE) in 0.1 M NaOH solution. The sensor exhibited a good linear response in the range of 5–1458 µM with a coefficient of determination of 0.9963. The detection limit was 0.77 µM, and sensitivity was 37.4 μA mM−1. In addition, the modified electrode showed high stability and interference-free response for to detection of the l-tyrosine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Iranian Chemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.