Abstract
Contamination of shooting range soils from the use of Pb bullets is under increasing scrutiny. Past research on Pb contamination of shooting ranges has focused on weathering reactions of Pb bullets in soil. The objective of this study was to determine the significance of abrasion of Pb bullets in contributing to soil Pb contamination. This was accomplished by firing a known mass of bullets into sand and analyzing for total Pb after removing bullets, through field sampling of a newly opened shooting range, and a laboratory weathering study. Forty-one mg of Pb were abraded per bullet as it passed through the sand, which accounted for 1.5% of the bullet mass being physically removed. At a shooting range that had been open for 3 months, the highest Pb concentration from the pistol range berm soil was 193 mg/kg at 0.5 m height, and from the rifle range berm soil was 1142 mg/kg at 1.0 m height. Most soils from the field abrasion experiment as well as soil collected from the rifle range had SPLP-Pb >15 μg/l (Synthetic Precipitation Leaching Procedure). Typically, Pb concentration in the rifle range was greater than that of the pistol range. Based on a laboratory weathering study, virtually all metallic Pb was converted to hydrocerussite (Pb 3(CO 3) 2(OH) 2), as well as to a lesser extent cerussite (PbCO 3) and massicot (PbO) within one week. Our study demonstrated that abrasion of lead bullets and their subsequent weathering can be a significant source of lead contamination in soils of a newly opened shooting range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.