Abstract

Biochemical systems utilize adenylates of amino acids to aminoacylate the 3'-terminal diols of tRNAs. The reactive acyl group of the biological acylation agent is a subset of the general class of acyl phosphate monoesters. Those compounds are relatively stable in aqueous solutions, and their alkyl esters are conveniently prepared. It has previously been shown that biomimetic reactions of acyl phosphate monoesters with diols and carbohydrates are promoted by lanthanide salts. However, they also promote hydrolysis of acyl phosphate reagents, and the overall yields are modest. An assessment of the catalytic potential of alternative Lewis acids reveals that lead ions may be more effective as catalysts than lanthanides. Treatment of carbohydrates with benzoyl methyl phosphate (BMP) and triethylamine in water with added lead nitrate produces monobenzoyl esters in up to 75% yield. This provides a water-compatible pathway for novel patterns of benzoylation of polyhydroxylic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call