Abstract
We show that layered oxyhalides PbBiO2X (X = Cl, Br, I) with a Sillen-type structure possess band levels appropriate for visible-light-induced water splitting. Under visible light, PbBiO2Cl and PbBiO2Br with band gap (BG) of 2.51 and 2.48 eV, respectively, stably oxidized water to O2 in the presence of an Fe3+ electron acceptor. A comparison with structurally related SrBiO2Cl and BaBiO2Cl (BG = 3.55 and 3.54 eV) combined with DFT calculations revealed a significant interaction between O 2p and Pb 6s orbitals leading to the upward shift of the valence band maximum in PbBiO2X as compared with (Sr,Ba)BiO2Cl. Z-scheme water splitting into H2 and O2 has been demonstrated using PbBiO2Cl as an O2-evolving photocatalyst, coupled with an appropriate H2-evolving photocatalyst in the presence of an Fe3+/Fe2+ redox mediator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.