Abstract

Whole-rock and galena lead-isotope analyses have been obtained from the Sicker Group Paleozoic island-arc volcanic package and from a Jurassic island-arc represented by the Bonanza Group volcanics and Island Intrusions. Galena lead-isotope analyses from the volcanogenic ore deposits at the Buttle Lake mining camp in the Sicker Group provide estimates of the initial lead ratios for the Sicker Group. Lead-isotope signatures are uniform within each of the major orebodies, but the Myra orebody is less radiogenic than the older H–W orebody. This has major significance in terms of ore genesis for these important deposits.There are significant differences in isotopic composition between the Sicker Group and Devonian island-arc type rocks in the Shasta district, California, which rules out direct correlations between the rock units of these two areas. Relatively high initial values of 207Pb/204Pb (> 15.56) and 208Pb/204Pb (> 38.00) suggest that large quantities of crustal lead must have been involved in the formation of the Sicker Group volcanic rocks. Thus it is proposed that the trench related to the Paleozoic island arc had a substantial input of continental detritus and may have lain near a continent.The Jurassic island arc is characterized by low 207Pb/204Pb ratios (< 15.59), suggesting a more primitive arc environment than for the Paleozoic arc. Bonanza Group volcanic rocks contain lead that is less radiogenic than lead in the Island Intrusions. Present and initial lead-isotope ratios of both the Bonanza Group volcanics and Island intrusions follow the same trend, supporting the hypothesis that they are comagmatic. Lead isotopes from a galena vein within the Island Copper porphyry deposit plot with the initial ratios for Bonanza Group volcanics and Island Intrusions. This confirms the hypothesis that this mineralization is related to the Jurassic island-arc volcanic event.Initial lead-isotope ratios for the Jurassic rock suite form a linear array on both 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb plots. If interpreted as due to isotopic mixing, the more radiogenic end member has a composition that is lower in 207Pb/204Pb and higher in 206Pb/204Pb than typical upper continental crust. Assimilation of Sicker Group material during the emplacement of the Jurassic arc can explain the mixing trend.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call