Abstract

Alocasia macrorrhiza is a fast growing and propagating herbaceous species commonly found in South China. To determine its physiological responses to Pb and Cd stresses, the biochemical, histochemical and cytochemical changes under PbAC2 and CdCl2 phytotoxicity were detected using leaf discs as an experimental model. After leaf discs were infiltrated in different concentrations of PbAC2 and CdCl2 solutions (0, 50, 100, 150, 200μM) for 72h, the formation of reactive oxygen species (H2O2 and O2−) in plant tissue were found to be exaggerated together with elevated OH concentration and cell death. Changes in chlorophyll fluorescence (Fv/Fm, ΦPSII, qP and NPQ) imaging colours/areas of leaf discs indicated decreased photosystem II functions by both heavy metal treatments and positive reactions of antioxidants under Pb2+ stress. Results showed that fluorescent detection of hydroxylated terephthlate using terephthalic acid as OH trap is a simple, yet valuable and specific method for monitoring OH generation in plant tissue under heavy metal stresses. As compared with Cd2+, Pb2+ was found to be less toxic, indicating that A. macrorrhiza tissue might have a potential tolerance to Pb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.