Abstract

Heavy metal pollution is a severe global issue as it threatens the future food security by altering the growth and development of plants, thereby reducing the production yield. Therefore, our aim was to explore the plants that possess resistance to heavy metals and investigate their potential to neutralize the toxic effects of heavy metals without translocating into their edible parts. Chicory is one of the important plant with high nutritional profile and has immense potential in the functional food sector. In the present study, biochemical and physiological parameters were conducted to evaluate oxidative stress in chicory plants subjected to different levels of Al and Pb treatments (0, 100, 200 and 300μM). The root/shoot growth and biomass accumulation declined significantly with Al and Pb stress. Roots were found to contain more Al and Pb concentration compared to shoots as also revealed by translocation factor (TF) <1. Indicators of oxidative stress viz., malondialdehyde, hydrogen peroxide (H2O2) and osmolytes increased significantly along with metal treatments. Besides, antioxidative defense enzyme system showed positive correlation upon each increment in Al and Pb stress. The present study concluded that chicory plants possess an efficient Al and Pb-detoxification mechanism as indicated by increased osmolyte concentration and strong antioxidant defense system thus could be an ideal candidate for cultivation in Pb and Al-contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call