Abstract

Heavy metals have a deleterious effect on lower urinary tract functions. Scant data has been reported about metals’ effect on altering detrusor muscle contractility. Rats were given lead acetate (3, 30 mg/kg), cadmium sulfate (0.1, 1 mg/kg) or ferrous sulfate-iron overload-(3, 30 mg/kg), in a subacute toxicity study (21 days, ip). In-vitro tension experiments were conducted using isolated rat detrusor muscle. Measurement of heavy metal concentrations in blood and tissue homogenates was performed, as well as histopathological examinations. Subacute toxicity induced by treatment with lead and cadmium was manifested as a decrease in EFS, ACh, and ATP-mediated contraction of isolated detrusor muscle. Iron overload only decreased EMAX of EFS and ACh-mediated contraction. Lead (30 mg/kg) caused an upward shift in the dose response curve of isoprenaline-induced relaxation, with a significant decrease in EMAX. Lead (30 mg/kg) or cadmium (1 mg/kg) inhibited adenosine (10−5 M)-induced relaxation. Comparisons to control tissues showed a selective accumulation of metals in the detrusor muscle. Histopathological examinations revealed edema and inflammation in the urinary bladder. Directly added lead (10 mM) inhibited detrusor muscle contraction in-vitro, and its effect was decreased in presence of atropine, and potentiated in presence of TEA, L-NAME, or MB. Cadmium's (0.1 mM) inhibitory effect was reduced in presence of nifedipine or trifluoperazine. In conclusion, lead, cadmium, or iron induce detrusor hypoactivity: The inhibitory effect of lead may be mediated by modulating muscarinic receptors but not the K+/NO/cGMP pathway, whereas cadmium inhibitory effect may be mediated by inhibiting the Ca2+/calmodulin pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call