Abstract

When considering resource shortages and environmental pressures, salvaging valuable metals from the cathode materials of spent lithium-ion batteries (LIBs) is a very promising strategy to realize the green and sustainable development of batteries. The reductive acid leaching of valuable metals from cathode materials using methanol as a reducing agent was studied. The results show that the leaching efficiencies of Co and Li are 99% under optimal leaching conditions. The leaching kinetics of cathode materials in a H2SO4-methanol system indicate that the leaching of Co and Li is controlled by diffusion, with activation energies of 69.98 and 10.78kJ/mol, respectively. Detailed analysis of the leaching reaction mechanism indicates that methanol is ultimately transformed into formic acid through a two-step process to further enhance leaching. No side reactions occur during leaching. Methanol can be a sustainable alternative for the reductive acid leaching of valuable metals from spent LIBs due to its high efficiency, application maturity, environmental friendliness, and low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call