Abstract

In this study, weak acid in the curing and leaching stages of copper ore was incorporated, and we analyzed its effect on the dissolution of copper and final impurities. The weak acid corresponds to a wastewater effluent from sulfuric acid plants produced in the gas treatment of copper smelting processes. This effluent is basically water with high acidity (pH-value low at 1), which contains several toxic elements and some valuable metals. The results indicated that there is no positive or negative effect on the incorporation of the weak acid in the curing stage, while the case of the leaching stage is favored. Toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) toxicity tests were performed on the solid leaching residues, determining that they accomplish the stability ranges of the impurities (Pb, Cd, Hg, Cr, Ba, Se, As, and Ag).

Highlights

  • The most common metallurgical procedures to produce copper of high grade from copper sulfides are by means of froth flotation and pyrometallurgical processes

  • The effect of the weak acid on curing the curing stage was tested in a series of batch tests

  • The current findings support the relevance of weak acid incorporation into the copper ore curing

Read more

Summary

Introduction

The most common metallurgical procedures to produce copper of high grade from copper sulfides are by means of froth flotation and pyrometallurgical processes. Froth flotation produces copper concentrate with some trace elements that are considered impurities, principally arsenic and antimony, and minor elements such as Cd, Hg, Pb, Bi, Se, and Te. The most common mineralogical species associated with toxic impurities present in copper concentrates are enargite (Cu3 AsS4 ), arsenopyrite (FeAsS), rejalgar (AsS), tennantite (Cu12 As4 S13 ), tetrahedrite (Cu12 Sb14 S13 ), and famatinite (Cu3 SbS4 ) [1,2,3,4,5,6]. In the case of arsenic, 1–2% is distributed into the matte, 1.5–5% into the slag, 16–20% into the dust, and 77–80% into the off-gas [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.