Abstract

Bioactive restorative materials were developed on the premise that direct restorations should not only serve the purpose of reconstructing dental hard tissue defects but also exhibit biological features that prevent secondary caries development, without having adverse effects on the host cells. This study focuses on assessing the in vitro biocompatibility of two novel bioactive restorative materials. Specimens of the bioactive restorative materials, Cention Forte (CF) and ACTIVA BioACTIVE RESTORATIVE (AB), a glass ionomer cement/glass hybrid (EQUIA Forte HT, EF) and an established nanohybrid composite (Venus Diamond, VD) were produced and finished. The specimens were eluted in water and methanol and the resulting eluates were analyzed via gas chromatography-mass spectrometry. hGF-1 cells were exposed to eluates prepared in cell culture medium. Cellular ATP levels, oxidized glutathione concentration, caspase-3/7 activity and the inflammatory response (IL-6 and PGE2 levels) were determined. Microscopic images were taken to examine the cell morphology. Methyl methacrylate and 2-Hydroxyethyl methacrylate were the main monomers detected in CF and AB eluates. All materials inhibited cell proliferation and led to significantly reduced ATP-levels. The cells exhibited a healthy morphology in the presence of CF and AB. Cells exposed to VD showed increased oxidized glutathione levels. Only EF led to enhanced caspase-3/7 activity. CF and AB caused IL-6 levels to increase, while EF and AB led to enhanced PGE2 levels. CF and AB are promising materials from a biological point of view and seem to have improved bioactive properties compared to glass ionomer cements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call