Abstract

Coal-based power generation produces over 750 Mt of coal ash per year globally, but under 50% of world production is utilised. Large amounts of fly ash are either stored temporarily in stockpiles, disposed of in ash landfills or lagooned. Coal ash is viewed as a major potential source of release of many environmentally sensitive elements to the environment. This paper encompasses over 90 publications on coal fly ash and demonstrates that a large number of elements are tightly bound to fly ash and may not be easily released to the environment, regardless of the nature of the ash. This review provides an extensive look at the extent to which major and trace elements are leached from coal fly ash. It also gives an insight into the factors underlying the leachability of elements and addresses the causes of the mobility. The mode of occurrence of a given element in the parent coal was found to play an important role in the leaching behaviour of fly ash. The amount of calcium in fly ash exerts a dominant influence on the pH of the ash–water system. The mobility of most elements contained in ash is markedly pH sensitive. The alkalinity of fly ash attenuates the release of a large number of elements of concern such as Cd, Co, Cu, Hg, Ni, Pb, Sn or Zn among others, but at the same time, it enhances the release of oxyanionic species such as As, B, Cr, Mo, Sb, Se, V and W. The precipitation of secondary phases such as ettringite may capture and bind several pollutants such ash As, B, Cr, Sb, Se and V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call