Abstract

In 1975 Congress passed the Energy Conservation Act to establish a US Strategic Petroleum Reserve (SPR) with a capacity of 750 million barrels of crude oil. The most economic storage medium was determined to be salt caverns leached in salt domes in Louisiana and Texas. Salt caverns existed at several sites when the reserve was created. These were obtained by the US Department of Energy (DOE) and used to initiate SPR oil storage. In order to meet the storage capacity approved by Congress, new caverns also had to be leached. To support the resulting design effort, finite element computer programs have been used to determine the creep closure and structural stability of salt caverns. Using site specific material properties including creep models, elastic moduli and fracture data, the finite element analyses have been replaced earlier empirical approaches to cavern design. This report presents results of such finite element analyses to determine the best cavern roof shape and the minimum pillar to diameter ratio, P/D. These numerical predictions indicate that the current cavern design is safe. 12 references, 7 figures, 2 tables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.