Abstract
The sustainable management of landfill leachates remains a matter of important concern in many countries. We used as case study a medium-sized Greek landfill, and we initially investigated the performance of the existing secondary leachate treatment system. The activated sludge process removed chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4-N, and PO4-P by 55%, 84%, 94%, and 14%, respectively, but the effluents did not meet the legislation requirements for discharge or reuse. Afterwards, different management options of these effluents (co-treatment with sewage in the centralized treatment plant, onsite tertiary treatment with reverse osmosis, granular activated carbon (GAC), ozonation, photo-Fenton, or constructed wetlands) were evaluated regarding their operational costs and environmental footprint. The use of constructed wetlands presented the lower operational cost, energy requirements, and greenhouse gas (GHG) emissions, not exceeding 21.5 kg CO2eq/day. On the other hand, the power consumption and the GHG emissions of the other on-site technologies ranged from 0.37 kWh/m3 and 5.56 kg CO2eq/day (use of GAC) to 39.19 kWh/m3 and 588.6 kg CO2eq/day (use of ozonation), respectively. The co-treatment of the leachates with municipal wastewater required 0.6 kWh/m3 and emitted 30.18 kg CO2eq/day. For achieving zero-discharge of the treated leachates, a system consisting of constructed wetlands and evaporation ponds in series was designed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.