Abstract

Removing artifacts is a prerequisite step for the analysis of electroencephalographic (EEG) signals. Artifacts appear in both time and time-frequency as well as spatial (multi-channel) domains.Here, we introduce two novel methods for removing EEG artifacts. In the first method, the common components among EEG channels are extracted and eliminated as artifacts, called common component rejection (CCR). In the second method, wavelet decomposition is employed to decompose the EEG signals, then the CCR method is applied to remove artifacts in the time- frequency domain, referred to as automatic wavelet CCR (AWCCR). The proposed methods are evaluated using semi-simulated data as well as application in real EEG data for motor imaginary classification.For semi-simulated data, the AWCCR showed higher performance in removing artifacts than CCR. Also, applying each of the proposed methods to the real EEG data to remove artifacts before motor imaginary classification increased the classification accuracy by about 10% compared to not removing artifacts.The proposed methods are compared with independent component analysis (ICA) and automatic wavelet ICA. AWCCR outperformed all methods in removing artifacts from semi- simulated data. The results also showed that both AWCCR and CCR methods outperformed the existing methods in removing artifacts from the real EEG data to improve the accuracy of motor imaginary classification.The findings show that in ordinary or motor imaginary EEG when signatures of artifacts are shared among EEG channels, AWCCR and CCR can identify and remove the artifacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.