Abstract
The Industrial Internet of Things (IIoT) is expected to be a key enabler for the Industry 4.0. However, networked control automation often requires high reliability and bounded latency to react properly. Thus, modern wireless protocols for industrial networks, such as IEEE 802.15.4-2015 time-slotted channel hopping (TSCH), rely on a strict schedule of the transmissions to avoid collisions and to make the end-to-end traffic deterministic. Unfortunately, guaranteeing a bounded end-to-end latency is particularly challenging since transmissions have to be temporally chained. Even worse, potential degradation of the link quality may result in reconstructing the whole TSCH schedule along the path. In this article, we propose the low-latency distributed scheduling function (LDSF) that relies on the organization of the slotframe in smaller parts, called blocks. Each transmitter selects the right set of blocks, depending on its hop distance from the border router, so that retransmission opportunities are automatically scheduled. To save energy, a node can still turn off its radio as soon as its packet is correctly acknowledged. Our mathematical analysis as well as our simulation evaluation show the efficiency of the proposed LDSF algorithm compared to three state-of-the-art scheduling functions (SFs): 1) the minimal SF (MSF); 2) low-latency SF (LLSF); and 3) stratum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.