Abstract

Metathesis-catalyzed polymerizations of primary silanes were performed to generate polysilanes suitable for functionalization with a variety of side groups. Modeling was employed to predict conformations and estimate electronic properties of candidate functionalized polysilanes. Chemical functionalization of oligo(hydrido)silanes with terminal {alpha}, {omega}-dienes under free radical conditions yielded highly crosslinked, nonporous polysilane networks. Ketone reduction with oligo(hydrido)silanes under free radical conditions led to novel poly(phenylalkoxysilanes). Free radical reduction of terminal alkenyl(alkoxy)silanes forms functionalized polysilanes which can be further transformed into sol-gel matrices with the polysilane functionality intact. These gels may be processed into nonporous xerogels or high surface area aerogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call