Abstract
Good control on molecular properties, and as a consequence on end-use properties, is very important for low-density polyethylene (LDPE) manufacturers. However, the connection between the architecture of polymer chains and the kinetic mechanism and polymerization conditions is still a subject of study. In this work, we present a comprehensive model of the polymerization of ethylene in high-pressure tubular reactors. In addition to the usual predictions of conversion, temperature profiles, and average molecular properties, this model also provides bivariate distributions such as molecular-weight–long-chain branching distribution and molecular-weight–short-chain branching distribution of LDPE produced under different operating conditions. The 2D probability-generating function technique is applied to obtain the bivariate distributions. This is a deterministic technique that allows the calculation of the distributions without any prior assumption of their shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.