Abstract

The pathogenicity of protozoan parasites is frequently attributed to their ability to circumvent the deleterious effects of ROS and Fe-S clusters are among their susceptible targets with paramount importance for parasite survival. The biogenesis of Fe-S clusters is orchestrated by ISC system; the sulfur donor IscS and scaffold protein IscU being its core components. However, among protozoan parasites including Leishmania, no information is available regarding biochemical aspect of IscU, its interaction partners and regulation. Here, we show that Leishmania donovani IscU homolog, LdIscU, readily assembles [2Fe-2S] clusters and, interestingly, follows Michaelis-Menten enzyme kinetics. It is localized in the mitochondria of the parasite and interacts with LdIscS to form a stable complex. Additionally, LdIscU and Fe-S proteins activity is significantly upregulated in resistant isolates and during stationary growth stage indicating an association between them. The differential expression of LdIscU modulated by Fe-S proteins demand suggests its potential role in parasite survival and drug resistance. Thus, our study provides novel insight into the Fe-S scaffold protein of a protozoan parasite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.