Abstract

Spinal cord injury (SCI) triggers interconnected malignant pathological cascades culminating in structural abnormalities and composition changes of neural tissues and impairs spinal cord tissue function. Cellulose nanofibers (CNF) have considerable potential in mimicking tissue microstructure for nerve regeneration, but the effectiveness of CNF in repairing SCI remains poorly understood. In this study, we designed a Mg–Fe layered double hydroxide (LDH)-doped cellulose nanofiber (CNF) scaffold with aligned intact microchannels and homogeneously distributed pores (CNF-LDH), loaded with retinoic acid and sonic hedgehog (CNF-LDH-RS) for neuroregeneration. The aligned microchannel structure and chemical cues in the scaffold were designed further to enhance the differentiation of neural stem cells towards neurons and promote axon growth while inhibiting differentiation to astrocytes. Transplanting the scaffolds into a completely transected SCI mice model dramatically improved behavioral and electrophysiological outcomes underpinned by robust neuronal regeneration, significant axonal growth and orderly neural circuit remodeling. RNA-seq analysis revealed the pivotal roles of the RhoA/Rock/Myosin II pathway and neuroactive ligand-receptor interaction pathway in SCI repair by CNF-LDH-RS. Particularly, Myosin II emerged as a key gene for functional recovery, and its effect on negative regulation of axon growth was suppressed by the scaffolds, resulting in a distinctly oriented growth of the axons along the microchannel structure. The results indicate that CNF-LDH scaffolds rationally combined with physical and biochemical cues create promising tissue-engineered substrates to facilitate the repair of spinal cord injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.