Abstract
In this paper, we present an efficient fully-discrete local discontinuous Galerkin (LDG) method for nonlinear reaction-diffusion systems, which are often used as mathematical models for many physical and biological applications. We can derive numerical approximations not only for solutions but also for their gradients at the same time, while most of methods derive numerical solutions only. And due to the strict time-step restriction ($\Delta t = O(h^2_{\min})$) of explicit schemes for stability, we introduce the implicit integration factor (IIF) method based on Krylov subspace approximation, in which the time step can be taken as $\Delta t = O(h_{\min})$. Moreover, the method allows us to compute element by element and avoid solving a global system of nonlinear algebraic equations as the standard implicit schemes do, which can reduce the computational cost greatly. Numerical experiments about the reaction-diffusion equations with exact solutions and the well-studied Schnakenberg system are conducted to illustrate the accuracy, capability and advantages of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.