Abstract
Automatic road extraction from remote sensing images has an important impact on road maintenance and land management. While significant deep-learning-based approaches have been developed in recent years, achieving a suitable trade-off between extraction accuracy, inference speed and model size remains a fundamental and challenging issue for real-time road extraction applications, especially for rural roads. For this purpose, we developed a lightweight dynamic addition network (LDANet) to exploit rural road extraction. Specifically, considering the narrow, complex and diverse nature of rural roads, we introduce an improved Asymmetric Convolution Block (ACB)-based Inception structure to extend the low-level features in the feature extraction layer. In the deep feature association module, the depth-wise separable convolution (DSC) is introduced to reduce the computational complexity of the model, and an adaptation-weighted overlay is designed to capture the salient features. Moreover, we utilize a dynamic weighted combined loss, which can better solve the sample imbalance and boosts segmentation accuracy. In addition, we constructed a typical remote sensing dataset of rural roads based on the Deep Globe Land Cover Classification Challenge dataset. Our experiments demonstrate that LDANet performs well in road extraction with fewer model parameters (<1 MB) and that the accuracy and the mean Intersection over Union reach 98.74% and 76.21% on the test dataset, respectively. Therefore, LDANet has potential to rapidly extract and monitor rural roads from remote sensing images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.